Image inpainting is a crucial technique in computer vision, particularly for reconstructing corrupted images. In medical imaging, it addresses issues from instrumental errors, artifacts, or human factors. The development of deep learning techniques has revolutionized image inpainting, allowing for the generation of high-level semantic information to ensure structural and textural consistency in restored images. This paper presents a comprehensive review of 53 studies on deep image inpainting in medical imaging, analyzing its evolution, impact, and limitations. The findings highlight the significance of deep image inpainting in artifact removal and enhancing the performance of multi-task approaches by localizing and inpainting regions of interest. Furthermore, the study identifies magnetic resonance imaging and computed tomography as the predominant modalities and highlights generative adversarial networks and U-Net as preferred architectures. Future research directions include the development of blind inpainting techniques, the exploration of techniques suitable for 3D/4D images, multiple artifacts, and multi-task applications, and the improvement of architectures.
Read full abstract