Abstract
Coal-gangue object detection has attracted substantial attention because it is the core of realizing vision-based intelligent and green coal separation. However, most existing studies have been focused on laboratory datasets and prioritized model lightweight. This makes the coal-gangue object detection challenging to adapt to the complex and harsh scenes of real production environments. Therefore, our project collected and labeled image datasets of coal and gangue under real production conditions from a coal preparation plant. We then designed a one-stage object model, named STATNet, following the “backbone-neck-head” architecture with the aim of enhancing the detection accuracy under industrial coal preparation scenarios. The proposed model utilizes Swin Transformer as backbone module to extract multi-scale features, improved path augmentation feature pyramid network (iPAFPN) as neck module to enrich feature fusion, and task-aligned head (TAH) as head module to mitigate conflicts and misalignments between classification and localization tasks. Experimental results on a real-world industrial dataset demonstrate that the proposed STATNet model achieves an impressive AP50 of 89.27 %, significantly surpassing several state-of-the-art baseline models by 2.02 % to 5.58 %. Additionally, it exhibits stronger robustness in resisting image corruption and perturbation. These findings demonstrate its promising prospects in practical coal and gangue separation applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.