The structural element within the whole structure contains structural elements like beams, slabs, columns and reinforced concrete walls. One of the most vertical structural elements is shear wall that built to giving stability to the building, resisting lateral force such as earthquake and wind and to reduce the building deformations. In present study, the analysis of corrugated vertical steel plate shear walls using finite element method by ABAQUS software is examined. Four different modes are analysed in which the first model is vertical corrugated steel shear wall plate, second is the composite shear wall with full interaction, third is the composite shear wall and finally the fourth model is composite shear wall with gap between concrete panel and steel frame to check out the full performance of different shear wall under the effects of cyclic loadings. Displacement, drift and energy dissipation will investigate throughout analysis. Analysis results indicated that the gap and composite action between steel and concrete panel play an important role on the performance of shear wall under cyclic loading. The decrease in displacement of composite shear wall as compared with the steel shear wall reach 11.86%.
Read full abstract