Abstract
Corrugated steel plate shear walls (CoSPSWs), which consist of corrugated infill steel wall panels and steel boundary frames, could be used as lateral force-resisting systems for mid- to high-rise buildings. In seismic design, the fundamental vibration period is generally estimated by empirical formulae corresponding to different types of lateral force-resisting systems. However, both the formulae in various design specifications and improved formulae proposed recently for steel shear walls with flat wall panels were not suitable and accurate for CoSPSWs since the difference in the load-carrying mechanism of steel shear walls with flat and corrugated wall panels respectively. Eigenvalue frequency analyses were conducted on a total of 60 validated CoSPSW finite element models with varying geometries, and results showed that fundamental periods estimated by current formulae were shorter than periods from the analyses, which might lead to the over-conservative and uneconomic design. Improved empirical formula was proposed for the fundamental period of CoSPSWs based on regression analyses. Simplified calculation method for calculating the fundamental period of CoSPSWs after the first trial design was proposed using the shear-flexure cantilever formulation, and validated through finite element analyses. Furthermore, influences of major geometric properties of CoSPSWs on the fundamental period was investigated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.