We study correlation effects and excitations in a dipolar Bose gas bilayer which is modeled by a one-dimensional double well trap that determines the width of an individual layer, the distance between the two layers, and the height of the barrier between them. For the ground state calculations we use the hypernetted--chain Euler Lagrange method and for the calculation of the excitations we use the correlated basis function method. We observe instabilities both for wide, well-separated layers dominated by \emph{intra-layer} attraction of the dipoles, and for narrow layers that are close to each other dominated by \emph{inter-layer} attraction. The behavior of the pair distribution function leads to the interpretation that the monomer phase becomes unstable when pairing of two dipoles becomes energetically favorable between or within layers, respectively. In both cases we observe a tendency towards "rotonization", i.e. the appearance of a soft mode with finite momentum in the excitation spectrum. The dynamic structure function is not simply characterized by a single excitation mode, but has a non-trivial multi-peak structure that is not captured by the Bijl-Feynman approximation. The dipole-dipole interaction between different layers leads to additional damping compared to the damping obtained for uncoupled layers.