BackgroundThe aim of this study was to evaluate corneal biomechanical properties in a population of healthy children in China using corneal visualization Scheimpflug technology (CST).MethodsAll children underwent complete bi-ocular examinations. CST provided intraocular pressure (IOP) and corneal biomechanical parameters, including time, velocity, length and deformation amplitude at first applanation (A1T, A1V, A1L, A1DA), at second applanation (A2T, A2V, A2L, A2DA), highest concavity time (HCT), maximum deformation amplitude (MDA), peak distance (PD), and radius of curvature (RoC). Pearson correlation analysis was used to assess the impacts of demographic factors, central corneal thickness (CCT), spherical equivalent (SE), and IOP on corneal biomechanics.ResultsOne hundred eight subjects (32 girls and 76 boys) with the mean age of 10.80 ± 4.13 years (range 4 to18 years) were included in the final analyses. The right and left eyes were highly symmetrical in SE (p = 0.082), IOP (p = 0.235), or CCT (p = 0.210). Mean A1T of the right eyes was 7.424 ± 0.340 ms; the left eyes 7.451 ± 0.365 ms. MDA was 0.993 ± 0.102 mm in the right eyes and 0.982 ± 0.100 mm in the left eyes. Mean HCT of the right eyes was 16.675 ± 0.502 ms; the left eyes 16.735 ± 0.555 ms. All CST parameters of both eye were remarkably symmetrical with the exception of A2L (p = 0.006), A1DA (p = 0.025). The majority of CST parameters of both eyes were significantly correlated with CCT and IOP (p < 0.05). However, age, SE, and sex exert little influence on the CST measurements.ConclusionsThis study found interocular symmetry in corneal biomechanics in healthy children eyes. Several CST biomechanical parameters in children are modified by CCT and IOP.
Read full abstract