Background/Objectives: Johnsongrass (Sorghum halepense) is an erect tetraploid, perennial, C4 grass weed species categorized among the world’s most noxious weeds due to its high competitive ability against crops and the increased number of field-evolved herbicide-resistant populations. The aim of the present study was to assess the growth rate and performance of resistant (R) johnsongrass genotypes hosting Trp574Leu target-site cross-resistance at ALS gene, inhibiting various herbicides, compared to susceptible (S) conspecific weeds, in the absence and presence of corn or sunflower antagonism. Methods: The aboveground biomass, tiller, and rhizome production ability of one S and one R johnsongrass population with a Trp574-Leu substitution conferring cross-resistance to ALS-inhibiting herbicides were compared under non-competitive conditions. Furthermore, the competitive ability of these two johnsongrass populations against corn or sunflower was determined in a target-neighborhood design. Results: The S and R johnsongrass populations displayed similar growth rates concerning aboveground biomass and tiller number, whereas the R population displayed a slightly greater growth rate for rhizome production compared to the S population. Both populations grown with corn produced more aboveground biomass than the ones grown with sunflowers. The aboveground biomass of corn was reduced to a greater extent than sunflower by the presence of both johnsongrass populations, while both crops were affected more by the S than by the R population. Conclusions: Although the inheritance and the genetic background of plant materls were not addressed, the findings of this study indicate clearly that the growth rate and competitive ability of the ALS-resistant johnsongrass population are not associated with the resistance mechanism involved.