Abstract

Abstract Volunteer corn (Zea mays L.) is a competitive weed in corn-based cropping systems. Scientific literature does not exist about the water use of volunteer corn grown in different crops and irrigation systems. The objectives of this study were to characterize the growth and evapotranspiration (ETa) of volunteer corn in corn, soybean [Glycine max (L). Merr.], and sorghum [Sorghum bicolor (L.) Moench] under center-pivot irrigation (CPI) and subsurface drip irrigation (SDI) systems. Field experiments were conducted in south-central Nebraska in 2021 and 2022. Soil moisture sensors were installed at depths of 0 to 0.30, 0.30 to 0.60, and 0.60 to 0.90 m to track soil water balance and quantify seasonal total ETa. Corn was the most competitive, as volunteer corn had the lowest biomass, leaf area, and plant height compared with the fallow. Soybean was the least competitive with volunteer corn, as the plant height, biomass, and leaf area of volunteer corn in soybean were similar to fallow at 15, 30, 45, and 60 d after transplanting (DATr). Averaged across crop treatments, irrigation type did not affect volunteer corn growth at 15 to 45 DATr. Soil water depletion and ETa were similar across crop treatments with and without volunteer corn, as water was not a limiting factor in this study. The ETa of volunteer corn was the highest in soybean (623 mm), followed by sorghum (622 mm), and corn (617 mm) under CPI. The SDI had higher irrigation efficiency, because without affecting crop yield, it had 3%, 6%, and 8% lower ETa in soybean (605 mm), sorghum (585 mm), and corn (571 mm), respectively. Although soil water use did not differ with volunteer corn infestation, a soybean yield loss of 27% was observed, which suggests that volunteer corn may not compete for moisture under fully irrigated conditions; however, it can impact the crop yield potential due to competition for factors other than soil moisture.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.