Abstract

Abstract. Large, precision weighing lysimeters can have accuracies as good as 0.04 mm equivalent depth of water, adequate for hourly and even half-hourly determinations of evapotranspiration (ET) rate from crops. Such data are important for testing and improving simulation models of the complex interactions of surface water and energy balances, soil physics, plant growth, and biophysics that determine crop ET in response to rapid microclimate dynamics. When crops are irrigated with sprinkler systems or other rapid additions of water, the irrigation event is typically short enough that not much ET data are compromised by the lysimeter mass change due to irrigation. In contrast, subsurface drip irrigation (SDI) systems may take many hours to apply an irrigation, during which time the lysimeter mass change is affected by both ET rate and irrigation application rate. Given that irrigation application rate can be affected by pressure dynamics of the irrigation system, emitter clogging and water viscosity changes with temperature over several-hour periods, it can be difficult to impossible to separate the ET signal from the interference of the irrigation application. The inaccuracies in the data can be important, particularly for comparisons of sprinkler and SDI systems, since they are of the order of 8 to 10% of daily ET. We developed an SDI irrigation system to apply irrigations of up to 50 mm to large weighing lysimeters while limiting the period of lysimeter mass change due to irrigation delivery to approximately ten minutes by storing the water needed for irrigation in tanks suspended from the lysimeter weighing system. The system applied water at the same rate as the SDI system in the surrounding field, allowed irrigation over periods of any duration, but often exceeding 12 h, without directly affecting lysimeter mass change and the accuracy of ET rate determinations, and allowed irrigation overnight without compromising lysimeter daily ET measurements. Errors in lysimeter ET measurements using the previous SDI system, which was directly connected to the field irrigation system, were up to 10% of daily ET compared with negligible error using the new system. Errors using the previous, directly connected, SDI system varied over time due to variable system pressure, and possibly due to water temperature (viscosity) changes and emitter clogging. With the new system, all of the water transferred to the lysimeter weighing system was eventually applied by the SDI system regardless of temperature, pressure, or emitter clogging. Differences between planned and applied irrigation depth were less than 2% over the irrigation season. Keywords: Evapotranspiration, ET, Subsurface drip irrigation, SDI, Weighing lysimeter.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call