Coriander (Coriander sativum L.) is an annual herb mainly cultivated for its seed characteristics. Drought stress is a major problem which affects coriander behaviour through biochemical responses. This study aimed to determine the nature and magnitude of epistasis in inheritance of seed yield (SY), percent of dehulled seed (PODS), percent of seed hulls (POSH), essential oil content (EOC), essential oil yield (EOY), dehulled seed fatty acid content (DSFAC), hull fatty acid content (HFAC), fatty acid content (FAC), and fatty acid yield (FAY), and to estimate additive and dominance variance for the traits not influenced by epistasic effects. Three testers, TN-59-158 (highly drought-susceptible), TN-58-230 (highly drought-tolerant, but low-yielding), and their F1 hybrid were each crossed for six genotypes. The experiment was performed under different levels of water deficit: control (C), moderate water deficit (MWD), and severe water deficit (SWD) conditions. Epistasis affected the expression of SY, EOC, EOY, FAC, and FAY in all water conditions, PODS in C, POSH in SWD, HFAC in MWD, and DSFAC in both C and MWD conditions. Total epistasic effects were partitioned, showing that both [i] and [j + l] type interactions were significant, with a prevalent influence of [i] type interactions on these traits except for POSH and FAC in the SWD condition, which exhibited a higher value of the [j + l] type. Both additive and non-additive gene actions were significant for those traits not significantly affected by epistasis in C, MWD, or SWD conditions. An additive type of gene action was preponderant for PODS in MWD and SWD, POSH in MWD, DSFAC in SWD, and HFAC in C and SWD conditions.
Read full abstract