The N2 flooding enhanced oil recovery process is an important technical means for the development of low permeability reservoirs due to its good energy enhancement effect and good injectivity. Low permeability reservoirs have a large permeability span and strong heterogeneity, which will have a significant impact on gas injection development. In order to explore the influence of matrix permeability and fractures on the production characteristics of N2 flooding, this study conducted a series of displacement experiments with full-scale matrix permeability (0.1–50 mD) and different fracture conditions. The research results indicate that, in non-fracture low permeability cores, the pressure difference decreased with the matrix permeability increase, and the volume of N2 injection required to achieve the highest injection pressure decreased. In addition, the increase in matrix permeability accelerates the gas breakthrough and gas channeling, but is beneficial for improving no-gas oil recovery and ultimate oil recovery due to the decrease in crude oil flow resistance. The impact of different matrix permeability ranges on production characteristics varies. When the matrix permeability is less than 2 mD, the characteristics of oil and gas production are significantly affected by changes in matrix permeability. When the matrix permeability is greater than 2 mD, the impact of changes in matrix permeability on development effectiveness is weakened. The existence of fracture causes a high permeability channel to appear in the low permeability matrix, exacerbating the gas breakthrough and channeling, and significantly reducing the utilization of matrix crude oil (about a 50% decrease in oil recovery). The increase in matrix permeability is beneficial for weakening the heterogeneity between fractures and the matrix, alleviating the gas channeling, thereby increasing the swept volume in the low permeability matrix and improving oil recovery.
Read full abstract