The copolymerization of e-caprolactam with ethyl 4-(butylamino)benzoate was shown to occur in the presence of sodium salts and an acyllactam as activator in a one-step bulk reaction. The mechanism is based on the deprotonation of the two monomers yielding activated species able to attack an acyllactam or an ester group at the polymer chain ends. Novel copolyamides with different percentages of aromatic/aliphatic units were synthesized in a one-step bulk copolymerization within a few minutes at 140 °C and characterized by NMR spectroscopy, size exclusion chromatography, and thermal analysis (DSC). This methodology, combining simultaneous anionic ring-opening and condensation reactions, affords a new synthetic pathway to introduce an aromatic unit in an aliphatic polyamide backbone, and more specifically a polyamide 6 containing about 20 mol % of N-alkyl aromatic amides was prepared.