In the recent years, the number of Point-Of-Care-Tests (POCTs) available for clinical diagnostic has steadily increased. POCTs provide a near-patient testing with the potential to generate a result quickly so that appropriate treatment can be implemented, leading to improved clinical outcomes compared to traditional laboratory testing. Technological advances, such as miniaturization of sensors and improved instrumentation, have revolutionized POCTs, enabling the development of smaller and more accurate devices. In this context, it has also gained increasing importance the screening of various analytes simultaneously to increase specificity and improve the characterization of the disease. This study is aimed at developing and characterizing a photonic integrated circuit for multiple markers detection, which represents the functional core towards a full developed POCT device for clinical pathology applications. The photonic sensor, based on microring resonators (MRRs), is functionalized by immobilizing specific antibodies on a copolymer layer deposited on the MRR’s surfaces. Surface chemical techniques were employed to analyse the surface chemical characteristics while fluorescence microscopy was involved to analyse the resulting bioreceptor surface density. The photonic sensor is characterized for the parallel detection of two biomarkers, the C-Reactive Protein (CRP) and the Creatine-Kinase-MB (CK-MB). The analyte-antibody binding curves were obtained both in buffer and in filtered un-diluted artificial saliva showing promising results both in terms of sensitivity, with limit of detection (LOD) of 103 pM for CRP and 140 pM for CK-MB, and in terms of specificity. These encouraging results let the assembly of a highly sensitive POC device for molecular diagnostics.
Read full abstract