Abstract

AbstractAqueous Zn‐ion batteries are promising and efficient energy storage systems owing to their low cost, high safety, and satisfactory capacity. However, the instability of Zn metal anodes, caused by dendritic growth and parasitic side reactions, hinders their practical application. In this study, a nanophase‐separated block copolymer layer that enhances the reversibility of Zn metal anodes is introduced. This layer consists of two components: a high‐performance engineering‐plastic‐based hydrophobic block exhibiting excellent mechanical properties and chemical stability, and a hydrophilic block that significantly improves the interfacial stability of the anode by selectively permeating Zn ions through the separated nanophase channels. Through an improved electrochemical system and scalable fabrication process, this block copolymer provides a feasible approach for the practical application of Zn metal anodes in aqueous energy storage systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.