Achieving microecological balance is a complex environmental challenge. This is because the equilibrium of microecological systems necessitates both the eradication of harmful microorganisms and preservation of the beneficial ones. Conventional materials predominantly target the elimination of pathogenic microorganisms and often neglect the protection of advantageous microbial species. Metal-organic frameworks (MOFs) with excellent physicochemical properties (such as crystalline particles of various dimensions with highly porous network topology, variable local networking structures, diverse compositions with functional groups, high specific surface areas and pore volumes for surface and porous guest molecular adsorption/adhesion/affinity/binding and separation) have been extensively studied as a type of bactericidal material. However, only recently, studies on using MOFs to protect microorganisms have been reported. This review provides a comprehensive analysis of the mechanisms and applications of various MOFs (such as ZIF-8, ZIF-90, HKUST-1, MOF-5, and MIL-101) in both microbial eradication and protection. Insights into previous studies on MOF development, the material-bacteria interaction mechanisms, and potential clinical and environmental applications are also elucidated. MOFs with different framework structures/topologies (zeolite, sodalite, scaffolding, diamond, one-dimensional, and spherical/cylindrical cavities/pore networks), particle dimensions, polyhedral, cubic, rod and open/uncoordinated metal centers or fully coordinated metal centers, and ligand functional groups are discussed to understand the varying degrees of activation and interaction of microorganisms. This review holds potential in guiding future research on the design, synthesis, utilization, and integration of MOFs for the targeted eradication and protection of microorganisms and generating novel MOFs with selective antimicrobial and protective properties. Moreover, this review delivers a timely update and outlines future prospects for MOFs and their interaction with microorganisms, emphasizing their potential as a promising candidate among the next generation of smart materials in the field of ecosystem regulation.
Read full abstract