Abstract

N-heterocyclic carbene (NHC) based compounds are remarkably known for astonishing biological potentials. Coordination of metal center with these compounds can substantially improve the biological potential for better efficacy. In this context, three binuclear azolium salts (L1-L3) and subsequent selenium adducts L1Se-L3Se were synthesized and assured through analytical techniques. Synthesized compounds were also simulated through computational approach and results were compared with experimental observations that also relatable with biological potentials. Synthesized compounds were screened against bacterial strains and interestingly, the studied compounds showed good antimicrobial potential with MIC values of 7.01, 10.7 and 10.5 µM for S. Aureus (gram positive bacteria) while 12.5, 11.75 and 14.5 µM against E. Coli (gram negative bacteria). The studied compounds showed good antioxidant activity to scavenge DPPH free radicals among which azolium salts were found better in antioxidant potential (IC50 5.75–6.55 µg/mL) than their respective selenium compounds (IC50 9.50–12.75 µg/mL). The hemolytic assay against red blood cells showed that ligands are least toxic comparative to their Se-adducts and can be further trialed for In Vivo studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.