In this paper, we introduce axiomatically a new value for cooperative TU games satisfying the efficiency, additivity, and symmetry axioms of Shapley (1953) and some new postulate connected with the average marginal contributions of the members of coalitions which can form. Our solution is referred to as the solidarity value. The reason is that its interpretation can be based on the assumption that if a coalition, sayS, forms, then the players who contribute toS more than the average marginal contribution of a member ofS support in some sense their “weaker” partners inS. Sometimes, it happens that the solidarity value belongs to the core of a game while the Shapley value does not.