Abstract
In a TU cooperative game with populationN, a monotonic core allocation allocates each surplusv (S) among the agents of coalitionS in such a way that agenti's share never decreases when the coalition to which he belongs expands. We investigate the property of largeness (Sharkey [1982]) for monotonic cores. We show the following result. Given a convex TU game and an upper bound on each agent' share in each coalition containing him, if the upper bound depends only upon the size of the coalition and varies monotonically as the size increases, then there exists a monotonic core allocation meeting this system of upper bounds. We apply this result to the provision of a public good problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.