Seismic anti-seismic rebar, as materials for supporting structures in large buildings, need to have excellent mechanical properties. By increasing the Nb content and controlling the cooling rate, the microstructure and precipitation behavior of the steel are adjusted to develop seismic anti-seismic rebar with excellent mechanical properties. Scanning electron microscopy (SEM), electron backscatter diffraction (EBSD), transmission electron microscopy (TEM), and a universal tensile testing machine were used to characterize the microstructure, precipitation phases, and mechanical properties of the experimental steels. The results show that the ferrite grain size, pearlite lamellae layer (ILS), and small-angle grain boundaries (LAGB) content of the high-Nb steels decreased to 6.39 μm, 0.12 μm, and 48.7%, respectively, as the Nb content was increased from 0.017 to 0.023 wt.% and the cooling rate was increased from 1 to 3 °C·s-1. The strength of the {332}<113>α texture is the highest in the high-Nb steels. The precipitated phase is (Nb, Ti, V)C with a diameter of ~50 nm, distributed on ferrite, and the matrix/precipitated phase mismatch is 8.16%, forming a semicommon-lattice interface between the two. The carbon diffusion coefficient model shows that increasing the Nb content can inhibit the diffusion of carbon atoms and reduce the ILS. The yield strength of the high-Nb steel is 556 MPa, and the tensile strength is 764 MPa.