Abstract
Secondary dendrite arm spacing (SDAS) is one of the most important factors affecting macrosegregation and mechanical properties in solidification processes. Predicting SDAS is one of the major parameters in foundry technology. In order to predict the evolution of microstructures during the solidification process, we proposed a simple model which predicted the secondary dendrite arm spacing based solely on the tip velocity (related to the tip supersaturation) and cooling rate. The model consisted of a growing cylinder inside a liquid cylindrical envelope. Two important hypotheses were made: (1) Initially the cylinder radius was assumed to equal the dendrite tip radius and (2) the cylindrical envelope had a fixed radius in the order of the dendrite tip diffusion length. The numerical model was tested against experiments using various Pb-Sn alloys for a fixed temperature gradient. The results were found to be in excellent agreement with experimental measurements in terms of SDAS and dendrite tip velocity prediction. This simple model is naturally destined to be implemented as a sub-grid model in volume-averaging models to predict the local microstructure, which in turn directly controls the mushy zone permeability and macrosegregation phenomena.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.