Abstract

Although numerous solidification experiments have been conducted for Al, Cu and Si alloys to investigate microstructural features like primary and secondary dendrite arm spacing, solute distribution with in secondary arms and second phase fraction, no systematic solidification study on Mg alloys has been performed to understand the evolution of microstructural features as a function of cooling rate and solute content. The present study focuses on the experimental microstructural evolution of Mg-3, 6 and 9 wt. % Al alloys in the cooling rate range of 1 K/sec to 1000 K/sec. The results suggest that secondary dendrite arm spacing and amount of second phase formation are strongly dependent on both solute content and cooling rate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call