While perennial forages dominate the feed base on Australian dairy farms, poor persistence of perennial ryegrass (Lolium perenne L.) and relatively poor forage nutritive value of kikuyu (Pennisetum clandestinum Hochst. ex. Chiov.) and paspalum (Paspalum dilatatum Poir.) has led to an increasing interest in growing annual forages. Thus, this study was conducted to identify annual forage species that are more productive than the commonly used perennial pasture species. Seventeen annual forages were investigated under ‘optimal’ irrigation and two deficit irrigation treatments (nominally 66 and 33% of irrigation water applied of the optimal level) over 3 years at Camden, New South Wales, on a brown dermosol in a warm temperate climate. The forages evaluated were: Italian ryegrass (Lolium multiflorum Lam.), oats (Avena sativa L.), triticale (Triticosecale rimpaui Wittm), wheat (Triticum aestivum L.), balansa clover (Trifolium michelianum Savi), berseem clover (Trifolium alexandrinum L.), maple pea (Pisum sativum L.), Persian clover (Trifolium resupinatum L. var. majus Boiss.), subterranean clover (Trifolium subterraneum L.), forage rape (Brassica napus L.), forage radish (Raphanus sativus L.), maize (Zea mays L.), Japanese millet [Echinochloa esculenta (A. Braun) H. Scholz], pearl millet [Cenchrus americanus (L.) Morrone], sorghum [Sorghum bicolor (L.) Moench], cow pea [Vigna unguiculata (L.) Walp.] and lablab [Lablab purpureus (L.) Sweet]. There was more than a 4-fold range in annual yield between forages, but the length of the growing season and season of growth made direct comparisons difficult. Under optimal irrigation, maize produced the highest mean yield of 29.0 t DM/ha in only 125 days, which was over three times greater than cow pea (9.2 t DM/ha) grown in the same season yet requiring 190 days. Of the cool season annuals, wheat had the highest mean yield of up to 20.6 t DM/ha in 230 days, which was more than three times the yield of the lowest yielding forage, subterranean clover, at only 6.5 t DM/ha in 215 days. The forages which require harvesting generally had higher yields within a growing period of similar length than those that were defoliated to reflect being ‘grazed’. Combining annual forages in an annual cycle (e.g. maize and wheat) had the potential to produce up to 47 t DM/ha. Deficit irrigation reduced annual yield of all warm season-grown forages ranging from 8% for sorghum up to 48% for maize. In contrast, annual yield reductions were generally smaller for cool season forages, there being no reduction for forage rape, subterranean clover or oats, but up to 35% for Persian clover. However, while yield is an important criterion for choosing dairy forages, it is only one factor in a complex system, and choice of forages must be considered on a whole-farm basis and include water use efficiency, nutritive value, cost of production and risk.