LoRa networks, widely adopted for low-power, long-range communication in IoT applications, face critical security concerns as radio-frequency transmissions are increasingly vulnerable to tampering. This paper addresses the dual challenges of privacy-preserving detection of tampered transmissions and the identification of unknown attacks in LoRa-based IoT networks. Leveraging Federated Learning (FL), our approach enables the detection of tampered RF transmissions while safeguarding sensitive IoT data, as FL allows model training on distributed devices without sharing raw data. We evaluated the performance of multiple FL-enabled anomaly-detection algorithms, including Convolutional Autoencoder Federated Learning (CAE-FL), Isolation Forest Federated Learning (IF-FL), One-Class Support Vector Machine Federated Learning (OCSVM-FL), Local Outlier Factor Federated Learning (LOF-FL), and K-Means Federated Learning (K-Means-FL). Using metrics such as accuracy, precision, recall, and F1-score, CAE-FL emerged as the top performer, achieving 97.27% accuracy and a balanced precision, recall, and F1-score of 0.97, with IF-FL close behind at 96.84% accuracy. Competitive performance from OCSVM-FL and LOF-FL, along with the comparable results of K-Means-FL, highlighted the robustness of clustering-based detection methods in this context. Visual analyses using confusion matrices and ROC curves provided further insights into each model's effectiveness in detecting tampered signals. This research underscores the capability of federated learning to enhance privacy and security in anomaly detection for LoRa networks, even against unknown attacks, marking a significant advancement in securing IoT communications in sensitive applications.
Read full abstract