Abstract

The robot number in industry is growing up rapidly. Building anomaly detection system for them can improve the security of these expensive devices. The article implements an anomaly detection framework based on digital twin, which are built by a hybrid convolutional autoencoder. The framework shares those neural network weight files as digital assets, users can use them to estimate the possible output from real input. It approximates the dynamic relationship between motion, current, temperature and vibration with hybrid convolution. Considering the limited generalization performance of direct data-driven methods in practical physical systems, this article introduces physical information methods to improve the constraint function of neural network. The influence of multiple physical fields on current is established by a unified neural network. Terminals detect anomaly with KL divergence between really current and estimated current. The article collects operational data from real robots and verifies it, and the experiment shows that the RMSE for current estimation is below 1.5 %, the F1-score in anomaly detection is over 98.23 %, false positive is below 1 %, false negative is below 1.7 %. The relevant technologies are gradually being promoted and applied in enterprises.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.