Let $C$ be a bounded, closed and convex subset of a reflexive metric space with a digraph $G$ such that $G$-intervals along walks are closed and convex. In the main theorem we show that if $T\colon C\rightarrow C$ is a monotone $G$-nonexpansive mapping and there exists $c\in C$ such that $Tc\in [c,\rightarrow )_{G}$, then $T$ has a fixed point provided for each $a\in C$, $[a,a]_{G}$ has the fixed point property for nonexpansive mappings. In particular, it gives an essential generalization of the Dehaish-Khamsi theorem concerning partial orders in complete uniformly convex hyperbolic metric spaces. Some counterparts of this result for modular spaces, and for commutative families of mappings are given too.