Abstract

Let $C$ be a bounded, closed and convex subset of a reflexive metric space with a digraph $G$ such that $G$-intervals along walks are closed and convex. In the main theorem we show that if $T\colon C\rightarrow C$ is a monotone $G$-nonexpansive mapping and there exists $c\in C$ such that $Tc\in [c,\rightarrow )_{G}$, then $T$ has a fixed point provided for each $a\in C$, $[a,a]_{G}$ has the fixed point property for nonexpansive mappings. In particular, it gives an essential generalization of the Dehaish-Khamsi theorem concerning partial orders in complete uniformly convex hyperbolic metric spaces. Some counterparts of this result for modular spaces, and for commutative families of mappings are given too.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.