BackgroundClostridium autoethanogenum is an acetogenic bacterium that autotrophically converts carbon monoxide (CO) and carbon dioxide (CO2) gases into bioproducts and fuels via the Wood–Ljungdahl pathway (WLP). To facilitate overall carbon capture efficiency, the reaction stoichiometry requires supplementation of hydrogen at an increased ratio of H2:CO to maximize CO2 utilization; however, the molecular details and thus the ability to understand the mechanism of this supplementation are largely unknown.ResultsIn order to elucidate the microbial physiology and fermentation where at least 75% of the carbon in ethanol comes from CO2, we established controlled chemostats that facilitated a novel and high (11:1) H2:CO uptake ratio. We compared and contrasted proteomic and metabolomics profiles to replicate continuous stirred tank reactors (CSTRs) at the same growth rate from a lower (5:1) H2:CO condition where ~ 50% of the carbon in ethanol is derived from CO2. Our hypothesis was that major changes would be observed in the hydrogenases and/or redox-related proteins and the WLP to compensate for the elevated hydrogen feed gas. Our analyses did reveal protein abundance differences between the two conditions largely related to reduction–oxidation (redox) pathways and cofactor biosynthesis, but the changes were more minor than we would have expected. While the Wood–Ljungdahl pathway proteins remained consistent across the conditions, other post-translational regulatory processes, such as lysine-acetylation, were observed and appeared to be more important for fine-tuning this carbon metabolism pathway. Metabolomic analyses showed that the increase in H2:CO ratio drives the organism to higher carbon dioxide utilization resulting in lower carbon storages and accumulated fatty acid metabolite levels.ConclusionsThis research delves into the intricate dynamics of carbon fixation in C. autoethanogenum, examining the influence of highly elevated H2:CO ratios on metabolic processes and product outcomes. The study underscores the significance of optimizing gas feed composition for enhanced industrial efficiency, shedding light on potential mechanisms, such as post-translational modifications (PTMs), to fine-tune enzymatic activities and improve desired product yields.