Abstract

Terrestrial plants contain ~70% hemicellulose and cellulose that are a significant renewable bioresource with potential as an alternative to petroleum feedstock for carbon-based fuels. The efficient and selective deconstruction of carbohydrates to their basic components, carbon monoxide and hydrogen, so called synthesis gas, is an important key step towards the realization of this potential, because the formation of liquid hydrocarbon fuels from synthesis gas are known technologies. Here we show that by using a polyoxometalate as an electron transfer-oxygen transfer catalyst, carbon monoxide is formed by cleavage of all the carbon-carbon bonds through dehydration of initially formed formic acid. In this oxidation-reduction reaction, the hydrogen atoms are stored on the polyoxometalate as protons and electrons, and can be electrochemically released from the polyoxometalate as hydrogen. Together, synthesis gas is formed. In a hydrogen economy scenario, this method can also be used to convert carbon monoxide to hydrogen.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.