The paper discusses new logic spintronic devices and the prospects for the use of perovskite-type multiferroics as working elements of magnetoelectric components. The principle of operation of the considered logical devices is based on the use of two components - a magnetoelectric, in which the magnetic state is recorded due to energy-efficient magnetoelectric interaction, and a spin-orbital component, in which information is read out based on the conversion of spin into charge due to the spin-orbital interaction of electrons; both components are interconnected by a nanoelectrode. When designing new logic spintronic devices, it is necessary to take into account the effectiveness of the mechanisms of ME interactions; features of spin - polarized currents and associated torques influencing magnetic moments; as well as other factors affecting the speed of switching magnetic states and the sensitivity of the device to external agents. Multiferroic materials that are promising for use as elements of ME components of new logic devices must meet a number of requirements, the most significant of which are the magnitude of the magnetoelectric coupling coefficient and the temperature at which ME effects occur. The paper considers representatives of multiferroics with a perovskite structure that meet these conditions, to some extent partially, these are high-temperature multiferroic bismuth ferrite (BiFeO3) and Ruddlesden-Popper structures, in which high-temperature ferroelectric effects are already realized and under certain conditions an ME effect is possible. The crystal structure of these compounds is considered, and the role of crystallographic distortions responsible for the manifestation of magnetoelectric properties is analyzed. Expressions are obtained for the tensor of the magnetoelectric effect as functions of magnetic order parameters, and the fundamental possibility of realizing ME effects in Ruddlesden-Popper structures containing magnetic cations is shown.
Read full abstract