Abstract

For aluminum matrix composite, the introduced particles will strengthen the matrix, but as the obstacles, the heterogeneous particles will hinder the dislocation movement, generate uneven material structure, and may become a source of stress concentration. Therefore, they are detrimental severely to the elongation and plasticity of composite. It is known that dislocations exhibit a paramagnetic behavior because they contain paramagnetic centers including localized electrons, holes, triplet excitons, ion radicals, etc. The initial radical pair of the dislocation-obstacle S (spin angular momentum) = ± 1/2 is in a singlet state, and the total spin of the radical pair is 0 and in the antiparallel spin direction, offsetting a magnetism of the radical pair. The magnetic field can change the spin direction from singlet state to triplet state. In the triplet state the electron spin is 1 and in the same spin direction. A strong bond of the dislocation-obstacle is formed only in the singlet state when the spins of the two electrons are antiparallel. So an obstacle is able to pin a dislocation only if the radical pair is in the singlet state. Under the condition of high pulsed magnetic field treatment (HPMFT) the conversion of electronic spin will be a fundamental cause of dislocation motion along a glide plane. The movement of pinned dislocations will change the material microstructure and influence the performance of material. By comparing the microstructural evolutions and the residual stresses of samples subjected to HPMFT with different values of magnetic induced density (B), the positive influence of magnetoplastic effect on the plasticity of aluminum matrix composite is investigated in this paper. The results show that the dislocation density is significantly increased when B changes from 2 T to 4 T. When B=4 T the dislocation density is enhanced by 3.1 times compared with that of the sample without HPMFT. Moreover, the residual stress is reduced apparently from 41 MPa (B=0) to -1 MPa (B=3 T). In the view of atomic scale, the high magnetic field leads to a magnetoplastic effect which contributes to the dislocation movement and promotes the dislocation depinning, thereafter, the number of movable dislocations increases up. From the viewing of the internal structure of composite, the magnetic field accelerates the releasing rate of internal stress and lowers the residual stress in material, which is beneficial to improving the plasticity of aluminum matrix composite.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.