To explore the influence of pelletization on the thermal conversion of municipal solid waste (MSW), pyrolysis characteristics and gasification reactivity of MSW pellet and powder were investigated in this study. Besides, the physicochemical properties of internal char and external char within the char pellet were separately characterized. Moreover, the relationship between the physicochemical properties of char pellet and its gasification reactivity was clarified. Results showed that the pyrolytic gas yields of MSW pellets were increased by 15.47 % and 11.55 % at 700 °C and 800 °C, respectively, compared to powder MSW. It was mainly attributed that the conversion of monocyclic aromatic hydrocarbons to polycyclic aromatic hydrocarbons was promoted by the longer residence time within the pellets. Meanwhile, the physicochemical properties of pyrolytic char pellets exhibited a significant heterogeneity. Specifically, the number of ordered aromatic rings of char pellet was reduced, while the order degree of carbon structure was enhanced, particularly the internal char. However, the difference magnitude between internal and external char was diminished with temperature. This was due to the higher temperature resulting in a larger surface specific area and pore volume of the char pellet, especially the internal char, thereby enhancing the pyrolysis process. Furthermore, an increase in pore volume within the char pellet improved gasification reactivity when the conversion rate > 0.4. These findings provide a reference for the pyrolysis and gasification process of MSW pellets.
Read full abstract