Abstract
Municipal solid waste (MSW)-to-energy systems have gained significant attention in recent years for their potential to produce renewable energy from waste. These systems involve the conversion of MSW into electricity, heat or fuel. One of the most promising applications of MSW-to-energy systems is the production of hydrogen, which is considered a clean and sustainable fuel. Machine learning algorithms have the potential to revolutionize the way MSW-to-energy systems are managed. The integration of machine learning into MSW-to-energy systems has the potential to significantly improve the sustainability and profitability of this industry. In this study, a novel integrated MSW-to-energy system is modeled to produce hydrogen, power, and oxygen and with capacities of heating water and air. Hydrogen production, power production, oxygen storage, hot water, hot air, and system emission are predicted using machine learning algorithms based on regression models with high validity and R2 values more than 99.8% having errors smaller than 1%. The reduced regression models are developed by eliminating the insignificant variables from the full algorithms using the analysis of variance. The findings reveal high accuracy for the reduced regression models while their errors slightly decrease to 2%. This suggests that the machine learning algorithms can also be used as an effective tool to further improve MSW-to-energy systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.