Abstract

In this work, the thermochemical properties of municipal solid waste (MSW) are studied using the torrefaction process as the main method for investigation. Torrefaction experiments were carried out using an electric laboratory furnace, at temperatures of 200, 250, and 300 °C. The residence time was set to 90 min. Proximate and ultimate analysis were performed on the torrefied MSW samples and compared with the properties of the raw MSW samples. In addition, the thermal properties of the obtained torrefied MSW samples were evaluated by thermogravimetric analysis (TGA) and derivative thermogravimetric analysis (DTG). The following could be stated: the obtained results showed that mass and energy yields (MY and EY, respectively) decrease with increasing when torrefaction temperature, while the heating values (HHV) increased under the same conditions (from 24.3 to 25.1 MJ/kg). Elemental analysis showed an increase in carbon content (C), from 45.7 ± 0.9 to 52.8 ± 1.05 wt.%, and decrease in oxygen content (O), from 45.6 ± 0.9 to 39.5 ± 0.8 wt.%, when torrefaction temperature is increased, which is consistent with the general definition of the torrefaction process. In addition, enhancement factors (EFs) and fuel ratios (FRs) were calculated, which ranged from 1.00 to 1.02 and 0.16 to 0.23, respectively. Some anomalies were observed during the thermal analysis, which are assumed to be related to the composition of the selected MSW. This study therefore shows that torrefaction pretreatment can improve the physicochemical properties of raw MSW to a level comparable to coal, and could contribute to a better understanding of the conversion of MSW into a valuable, solid biofuel.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call