A VIBER vibrating mechanism is coupled to a cannula or needle and operates to provide flexural vibrations to move the needle and to enable detection of the position of a needle within a body of interest by a color ultrasound imaging system. The VIBER mechanism exhibits multiple modes of oscillation when energized. The VIBER mechanism is excited to exhibit predetermined oscillations at a given frequency in the X plane, a predetermined oscillation at another frequency in the Y plane and still another frequency of oscillation in the Z plane. In this manner, the VIBER mechanism device exhibits motion in all three planes, which motion is detectable by a conventional color ultrasound imaging system. The frequency of oscillation is a function of the entire system, namely the VIBER mechanism, the needle or cannula which is attached to the VIBER mechanism and the tissue. The resonant frequency is preferred as it provides larger vibrational amplitudes. In this manner, a resonant frequency is controlled by means of a feedback control loop, whereby the frequency applied to the VIBER mechanism is monitored to determine resonance and is held at the resonant frequency as the VIBER mechanism or needle is moved. The vibration in the representative planes causes a typical conventional color ultrasound imaging system to display the vibration or movement by means of a color variation. By viewing the display, a system operator, such as a physician can visualize the location of the needle because of the color indication provided by the display.
Read full abstract