This paper comparatively analyzes the static random-access memory (SRAM) cell designs for fault tolerance. Since SRAM cells are sensitive to radiation-induced single event upsets, various circuit-level approaches have been applied. Compared to the conventional SRAM cell circuits, one possibility is adding redundant storage nodes by means of additional transistors. The strength and weakness of the SRAM cells in terms of various performance aspects—speed, area, power, stability, fault tolerance, etc.—according to the design approaches are compared analytically and discussed. The discussion concludes that, in the future, it is paramount to develop an SRAM cell design with a mitigated trade-off between read/write performance and SEU tolerance.
Read full abstract