A new facial authentication model called global local adaptive particle swarm optimization-based support vector machine, was proposed in this paper. The proposed model aimed to solve the problem of finding the preeminent parameters of support vector machine in order to come out with a powerful human facial authentication technique. The conventional particle swarm optimization algorithm was utilized with support vector machine to explore the preeminent parameters of support vector machine. However, the particle swarm optimization support vector machine model has some limitations in selecting the velocity coefficient and inertia weight. One of the best approaches, which is used to solve the velocity coefficient problem, is adaptive acceleration particle swarm optimization. Also, the global-local best inertia weight is used efficiently for selecting the inertia weight. Therefore, the global local adaptive particle swarm optimization-based support vector machine model was proposed based on combining adaptive acceleration particle swarm optimization, global-local best inertia weight, and support vector machine. The proposed model used the principal component analysis approach for feature extraction, as well as global local adaptive particle swarm optimization for finding the preeminent parameters of support vector machine. In the experiments, two datasets (YALEB and CASIAV5) were used, and the suggested model was compared with particle swarm optimization support vector machine and adaptive acceleration particle swarm optimization support vector machine methods. The comparison was via accuracy, computational time, and optimal parameters of support vector machine. Our model can be used for security applications and apply for human facial authentication.
Read full abstract