AbstractThe correlation between divergence and vorticity has traditionally served as a signature of convection in rotating fluids. While this correlation has been observed in the JIRAM brightness temperature data for Jupiter's polar vortices, it is notably absent in the JIRAM images. This discrepancy presents a new challenge in determining whether this correlation can serve as a reliable signature of convection in rapidly rotating atmospheres. In this study, we analyzed data from a three‐dimensional simulation of Jupiter's polar vortices using a deep convection model. Our findings confirm the theoretical prediction of a negative correlation between divergence and vorticity in the northern hemisphere. Interestingly, this correlation is weaker within the cyclones compared to outside them. The skewness of upflows and downflows plays an important role in this negative correlation. We also observed that the correlation varies with height, being strongest near the interface and decaying away from it. The correlation diminishes when the resolution is reduced. Furthermore, our findings suggest that the geostrophic approximation may not be suitable for the Jovian atmosphere, particularly in the stable layer. Both tilting and stretching effects contribute to the material derivative of vorticity, with the tilting effect dominating in the unstable layer and the stretching effect prevailing in the stable layer. This suggests a transfer of vorticity from the convectively unstable layer to the stable layer. Consistent with observations, we also noted an upscale energy transfer from smaller to larger scales.