Abstract

This study delves into computational fluid dynamics (CFDs) predictions for SiO2–water nanofluids, meticulously examining both single-phase and two-phase models. Employing the finite volume approach, we tackled the three-dimensional partial differential equations governing the turbulent mixed convection flow in a horizontally corrugated channel with uniform heat flux. The study encompasses two nanoparticle volume concentrations and five Reynolds numbers (10,000, 15,000, 20,000, 25,000, and 30,000) to unravel these intricate dynamics. Despite previous research on the mixed convection of nanofluids using both single-phase and two-phase models, our work stands out as the inaugural systematic comparison of their predictions for turbulent mixed convection flow through this corrugated channel, considering the influences of temperature-dependent properties and hydrodynamic characteristics. The results reveal distinct variations in thermal fields between the two-phase and single-phase models, with negligible differences in hydrodynamic fields. Notably, the forecasts generated by three two-phase models—Volume of Fluid (VOF), Eulerian Mixture Model (EMM), and Eulerian Eulerian Model (EEM)—demonstrate remarkable similarity in the average Nusselt number, which are 24% higher than the single-phase model (SPM). For low nanoparticle volume fractions, the average Nusselt number predicted by the two-phase models closely aligns with that of the single-phase model. However, as the volume fraction increases, differences emerge, especially at higher Reynolds numbers. In other words, as the volume fraction of the nanoparticles increases, the nanofluid flow becomes a multi-phase problem, as depicted by the findings of this study.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call