In this paper, the population dynamics of rabies-infected dogs are studied. The mathematical model is constructed by dividing the dog population into two categories: stray dogs and domestic dogs. On the other hand, the rabies virus is likely to spread in both populations. In the current model, disease-controlling strategies such as vaccination and culling are applied, and their impact is studied. Both subpopulations of susceptible individuals are vaccinated to control disease spread. The current study assumes that stray dogs can transmit rabies to domestic dogs but not the other way around. Because domestic dogs are under the control of their owners, they are well vaccinated. The model is medically and analytically correct because the findings are idealistic and limited. The next-generation matrix technique is used to compute the effective reproductive amount, and also, each parameter is subjected to sensitivity analysis. The equilibrium point free from disease is discovered, demonstrating that it was asymptotically steady locally and globally. A conditionally global asymptotically stable point of endemic equilibrium is also discovered using the Lyapunov function method. The numerical simulation, which makes use of approximations for parameter values, shows that the most efficient method for avoiding rabies transmission is a combination of vaccination and the culling of infected stray dogs. Using MATLAB’s ode45, this numerical simulation investigation was carried out. Our early findings indicated that the annual dog birth rate is a critical factor in influencing the occurrence of rabies. In the body of the paper, the findings and discussion are organized logically.