Abstract
Infectious pathogens are pressing concerns due to their heavy toll on global health and socioeconomic infrastructure. Rapid, sensitive, and specific pathogen detection methods are needed more than ever to control disease spreading. The fast evolution of clustered regularly interspaced short palindromic repeats (CRISPR)-based diagnostics (CRISPR-Dx) has opened a new horizon in the field of molecular diagnostics. This review highlights recent efforts in configuring CRISPR technology as an efficient diagnostic tool for pathogen detection. It starts with a brief introduction of different CRISPR-Cas effectors and their working principles for disease diagnosis. It then focuses on the evolution of laboratory-based CRISPR technology toward a potential point-of-care test, including the development of new signaling mechanisms, elimination of preamplification and sample pretreatment steps, and miniaturization of CRISPR reactions on digital assay chips and lateral flow devices. In addition, promising examples of CRISPR-Dx for pathogen detection in various real samples, such as blood, saliva, nasal swab, plant, and food samples, are highlighted. Finally, the challenges and perspectives of future development of CRISPR-Dx for infectious disease monitoring are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.