We report the nonvolatile modulation of microwave conductivity in ferroelectric PbZr0.2Ti0.8O3-gated ultrathin LaNiO3/La0.67Sr0.33MnO3 correlated oxide channel visualized by microwave impedance microscopy. Polarization switching is obtained by applying a tip bias above the coercive voltage of the ferroelectric layer. The microwave conductivity of the correlated channel underneath the up- and down-polarized domains has been quantified by finite-element analysis of the tip-sample admittance. At room temperature, a resistance on/off ratio above 100 between the two polarization states is sustained at frequencies up to 1 GHz, which starts to drop at higher frequencies. The frequence-dependence suggests that the conductance modulation originates from ferroelectric field-effect control of carrier density. The modulation is nonvolatile, remaining stable after 6 months of domain writing. Our work is significant for potential applications of oxide-based ferroelectric field-effect transistors in high-frequency nanoelectronics and spintronics.
Read full abstract