Abstract

AbstractMetal halide perovskite optoelectronic devices have made significant progress over the past few years, but precise control of charge carrier density through doping is essential for optimizing these devices. In this study, the potential of using an organic salt, N,N‐dimethylanilinium tetrakis(pentafluorophenyl)borate, as a dopant for Sn‐based perovskite devices, is explored. Under optimized conditions, the thin film transistors based on the doped 2D/3D perovskite PEAFASnI3 demonstrate remarkable improvement in hole mobility, reaching 7.45 cm2V−1s−1 with a low subthreshold swing and the smallest sweep hysteresis (ΔVhysteresis = 2.27 V) and exceptional bias stability with the lowest contact resistance (2.2 kΩ cm). The bulky chemical structure of the dopant prevents it from penetrating the perovskite lattice and also surface passivation against Sn oxidation due to its hydrophobic nature surface. This improvement is attributed to the bifunctional effect of the dopant, which simultaneously passivates defects and improves crystal orientation. These findings provide new insights into potential molecular dopants that can be used in metal halide perovskite devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.