In this paper, we investigate the controllability problems for heterogeneous multiagent systems (MASs) with two-time-scale feature under fixed topology. Firstly, the heterogeneous two-time-scale MASs are modeled by singular perturbation system with a singular perturbation parameter, which distinguishes fast and slow subsystems evolving on two different time scales. Due to the ill-posedness problems caused by the singular perturbation parameter, we analyze the two-time-scale MASs via the singular perturbation method, instead of the general methods. Then, we split the heterogeneous two-time-scale MASs into slow and fast subsystems to eliminate the singular perturbation parameter. Subsequently, according to the matrix theory and the graph theory, we propose some necessary/sufficient criteria for the controllability of the heterogeneous two-time-scale MASs. Lastly, we give some simulation and numerical examples to demonstrate the effectiveness of the proposed theoretical results.
Read full abstract