Contemporary hydrological models often oversimplify or neglect the effects of glacier ablation on watershed hydrological processes, leading to inaccurate simulations. To address this issue, we introduce a glacier ablation module that incorporates glacier ablation, sublimation, meltwater refreezing, and snow accumulation, integrated with the fully distributed hydrological model ESSI-3, forming the Glacier-ESSI-3 model. Application of the Glacier-ESSI-3 model in the headwaters of the Yangtze River (HYaR) and Yellow River (HYeR) demonstrates superior accuracy compared to the ESSI-3 model, effectively capturing the impact of glacier ablation on hydrological dynamics. Validation with remotely sensed data of snow cover and glacier dynamics confirms the model's efficacy in reproducing actual conditions in both watersheds. The results indicate that snow meltwater contributes more significantly to runoff than glacier meltwater, and the HYaR exhibiting a larger glacier meltwater contribution than the HYeR. Over time, the contribution rate of snow+glacier meltwater to runoff in the HYaR shows a fluctuating upward trend (10.04 % ± 1.13 % to 25.02 % ± 2.80 %), while it remains relatively stable in the HYeR (6.83 % ± 1.13 % to 10.19 % ± 0.89 %). This study highlights the critical role of glacier ablation in hydrological processes within glacierized watersheds. The Glacier-ESSI-3 model proves to be a robust tool for enhancing hydrological simulations in cold plateau regions, providing valuable insights into the intricate interactions between glaciers and hydrological dynamics.