Abstract

The Tibetan Plateau (TP) has experienced amplified warming in recent decades, causing glaciers to melt and affecting river runoff. It is well established that the southern and northern areas of the TP have responded to climate changes differently, with the north dominated by a westerly climate and the south by the Indian monsoon. While there are more glaciers in the TP than in any other region outside the polar areas, most of these glaciers are tiny, and only a limited number of them have been monitored to study mass balance and downward runoff. This study used the mass balance measured at two glaciers along with in situ and satellite data to drive a hydrological model called the Alpine Runoff Predictor that includes glacier melt to simulate glacial melting and the accompanying hydrological processes of the two glacierized basins, analyze their contributions to the river runoffs, and investigate their responses to local climate changes. The results show that the glacier meltwater in both river basins showed an increasing trend, with values of 0.001 × 108 m3 a−1 in the Kyanjing River basin and 0.0095 × 108 m3 a−1 in the Tuole River basin. However, their multi-year average contributions to the runoff were 12.5% and 5.6%, respectively. In contrast to the Tuole River basin, where runoff is increasing (0.0617 × 108 m3 a−1), the Kyanjing River basin has decreasing runoff (−0.0216 × 108 m3 a−1) as a result of decreasing precipitation. This result highlights the dominant role played by precipitation changes in the two basins under study, which are characterized by small glacier meltwater contributions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call