In recent years, reversible data hiding (RDH) has become a research hotspot in the field of multimedia security that has aroused more and more researchers’ attention. Most of the existing RDH algorithms are aiming at continuous-tone images. For RDH in encrypted halftone images (RDH-EH), the original cover image cannot be recovered losslessly after the watermark is extracted. For some application scenarios such as medical or military images sharing, reversibility is critical. In this paper, a reversible data hiding scheme in encrypted color halftone images (RDH-ECH) is proposed. In the watermark embedding procedure, the cover image is copied into two identical images to increase redundancy. We use wet paper code to embed the watermark into the image blocks. Thus, the receiver only needs to process the image blocks by the check matrices in order to extract the watermarks. To increase embedding capacity, we embed three layers in the embedding procedure and combine the resulting images into one image for convenience of transmission. From the experimental results, it can be concluded that the original image can be restored entirely after the watermarks are extracted. Besides, for marked color halftone images, our algorithm can implement high embedding capacity and moderate visual quality.