In this paper, we provide a survey on available numerical approaches for solving low-thrust trajectory optimization problems. First, a general mathematical framework based on hybrid optimal control will be presented. This formulation and their elements, namely objective function, continuous and discrete state and controls, and discrete and continuous dynamics, will serve as a basis for discussion throughout the whole manuscript. Thereafter, solution approaches for classical continuous optimal control problems will be briefly introduced and their application to low-thrust trajectory optimization will be discussed. A special emphasis will be placed on the extension of the classical techniques to solve hybrid optimal control problems. Finally, an extensive review of traditional and state-of-the art methodologies and tools will be presented. They will be categorized regarding their solution approach, the objective function, the state variables, the dynamical model, and their application to planetocentric or interplanetary transfers.