Warm temperature exposure during winter has reportedly resulted in the apparent negation of chilling in several fruit species. This study was conducted to investigate the floral and vegetative response of two pistillate kiwifruit cultivars to intermittent warm temperature interruption during chilling accumulation. Dormant 1-year-old canes of Actinidia chinensis ‘AU Golden Dragon’ and Actinidia deliciosa ‘AU Fitzgerald’ were collected in December 2018 and 2019 (334 and 360 chilling units, respectively), shortly after leaf abscission. Canes were cut to 10 nodes after removing the first six basal nodes, placed in jars filled with distilled water, and transferred to respective chilling treatments. Treatments included continuous chilling (CC) (in addition to base chilling) at 1-week (168 chilling units) increments (0–5 weeks) and chilling exposure at the same increments with intermittent warm temperature (WT). For the WT treatments, each week of chilling was followed by 3 days of exposure to warm conditions. Chilling and warm temperature exposure were simulated by 7/4 °C and 25/17.2 °C (day/night) air temperatures, respectively, using separate climate-controlled growth chambers. After treatments, canes were forced in a third chamber at 21.1 to 25.0 °C with light-emitting diode lighting. Vegetative budbreak, floral bud number (from here on defined as floral response), and floral development stage were recorded for each cane at 2-day intervals. For ‘AU Golden Dragon’, WT did not result in any reduced floral response at any of the observed chilling levels. However, lower mean floral response was observed with WT, as compared with CC for ‘AU Fitzgerald’ at 5 weeks of chilling over the 2 years (P = 0.05). WT also lessened the effect of apical dominance with respect to vegetative/floral response to node position for both cultivars. Chilling type had no significant effect on vegetative response in either cultivar. Estimated chilling requirements (CC) in this experiment were similar to those reported previously for these cultivars. Results suggest that A. chinensis cultivars may respond more favorably than A. deliciosa to the erratic winter temperature patterns experienced in the southeastern United States.