Plasma pharmacokinetic (PK) profiles often do not resemble the PK within the central nervous system (CNS) because of blood–brain-border (BBB) processes, like active efflux by P-glycoprotein (P-gp). Methods to predict CNS-PK are therefore desired. Here we investigate whether in vitro apparent permeability (Papp) and corrected efflux ratio (ERc) extracted from literature can be repurposed as input for the LeiCNS-PK3.4 physiologically-based PK model to confidently predict rat brain extracellular fluid (ECF) PK of P-gp substrates. Literature values of in vitro Caco-2, LLC-PK1-mdr1a/MDR1, and MDCKII-MDR1 cell line transport data were used to calculate P-gp efflux clearance (CLPgp). Subsequently, CLPgp was scaled from in vitro to in vivo through a relative expression factor (REF) based on P-gp expression differences. BrainECF PK was predicted well (within twofold error of the observed data) for 2 out of 4 P-gp substrates after short infusions and 3 out of 4 P-gp substrates after continuous infusions. Variability of in vitro parameters impacted both predicted rate and extent of drug distribution, reducing model applicability. Notably, use of transport data and in vitro P-gp expression obtained from a single study did not guarantee an accurate prediction; it often resulted in worse predictions than when using in vitro expression values reported by other labs. Overall, LeiCNS-PK3.4 shows promise in predicting brainECF PK, but this study highlights that the in vitro to in vivo translation is not yet robust. We conclude that more information is needed about context and drug dependency of in vitro data for robust brainECF PK predictions.
Read full abstract