AbstractHydration of the stratosphere by tropopause‐overshooting convection has received increasing interest due to the extreme concentrations of water vapor that can result and, ultimately, the climate warming potential such hydration provides. Previous work has recognized the importance of numerous dynamic and physical processes that control stratospheric water vapor delivery by convection. This study leverages recent comprehensive observations from the NASA Dynamics and Chemistry of the Summer Stratosphere (DCOTSS) field campaign to determine the frequency at which each process operates during real events. Specifically, a well‐established analysis technique known as tracer‐tracer correlation is applied to DCOTSS observations of ozone, water vapor, and potential temperature to identify the occurrence of known processes. It is found that approximately half of convectively‐driven stratospheric hydration samples show no indication of significant air mass transport and mixing, emphasizing the importance of ice sublimation to stratospheric water vapor delivery. Furthermore, the temperature of the upper troposphere and lower stratosphere environment and/or overshoot appears to be a commonly active constraint, since the approximate maximum possible water vapor concentration that can be reached in an air mass is limited to the saturation mixing ratio when ice is present. Finally, little evidence of relationships between dynamic and physical processes and their spatial distribution was found, implying that stratospheric water vapor delivery by convection is likely facilitated by a complex collection of processes in each overshooting event.
Read full abstract